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In this article, we discuss the application of master equation methods to problems in gas phase chemical
kinetics. The focus is on reactions that take place over multiple, interconnected potential wells and on the
dissociation of weakly bound free radicals. These problems are of paramount importance in combustion
chemistry. To illustrate specific points, we draw on our experience with reactions we have studied previously.

Introduction

In applications of chemical kinetics, such as combustion,
atmospheric chemistry, and chemical vapor deposition, chemical
reactions are rarely of the type encountered in textbooks. More
frequently, they are complicated processes that take place over
multiple, interconnected potential wells. In combustion, the field
with which we are most familiar, such reactions completely
dominate our understanding of how aromatic compounds,
polycyclic aromatic compounds (PAH), and soot are formed in
flames.1-7 They are the critical steps in NOx control strategies,8-17

and they play an important role in sulfur chemistry.18-21 They
are also pivotal in predicting the chemistry of low-temperature
oxidation, cool flames, and engine knock.22-26 Such reactions
may be bimolecular (i.e., chemically activated), or they may
be thermal dissociation/isomerization processes. Some of the
former are “collisionless” in that the intermediate complexes
are so short-lived that they effectively do not suffer any
collisions under conditions that are normally of interest.
However, intermediate complexes more commonly live long
enough to suffer numerous collisions. In such cases, any of a
number of stabilized or bimolecular products may result. These
reactions (unimolecular or bimolecular), which dominate virtu-
ally all applications of chemical kinetics, require a theoretical
description in terms of a time-dependent, multiple-well master
equation (ME).

In the pages that follow, we discuss not only the formulation
and solution of the multiple-well master equation but also the
systematic procedure we have developed over the past few years
for determining phenomenological rate coefficients from such
solutions. Of course, it is these rate coefficients as a function
of temperature and pressure,k(T,p), that are required for
modeling the macroscopic phenomena of interest. The meth-
odology discussed below for multiple-well problems is restricted
to one-dimensional MEs in which the total rotational-
vibrational energy,E, is the independent variable. However,

there are two special cases for which we can solve a two-
dimensional master equation withE and J, the total angular
momentum quantum number, as independent variables. The first
of these cases is the collisionless (or zero-pressure) limit for
any multiple-well problem; the second is the irreversible, single-
well (but multiple product channel) dissociation (or isomeriza-
tion) of a molecule. These special cases provide us with a means
for evaluating when angular momentum conservation is likely
to be important. However, more importantly, both cases are
directly applicable to a wide range of important problems. Of
particular importance in combustion is the dissociation of weakly
bound free radicals. In the present article, we discuss our
solutions to these two problems as well as the general multiple-
well methodology.

Considerable confusion exists concerning the theoretical
description of chemical reactions of the type that concern us in
this article, reactions that inherently involve nonequilibrium state
distributions. Most of this confusion stems from the failure to
make a distinction between a rate coefficient and what might
best be called a “flux coefficient”. A flux coefficient is exactly
what the name implies: for first-order processes, the product
of a flux coefficient and the reactant concentration gives the
flux from one molecular configuration to another. For such
processes, the flux coefficient is the probability per unit time
of the reactant making a transformation to the product. A rate
coefficient cannot (in general) be interpreted in this way. All
differences between the two are connected with weak energy-
transferring collisions, either in the reactant, the product, or in
an intermediate complex. A succinct, lucid, and insightful
discussion of the differences between these two rate parameters
(and others) is given in a seminal article written by Widom
over 40 years ago.27 What we call a flux coefficient is the rate
coefficient “r” in Widom’s paper, although we use the term
somewhat more generally than Widom does (the term flux
coefficient appears to have originated with Aguda and Prit-
chard28). One goal of the present article is to illustrate with some
specific examples the pitfalls and flawed conclusions that can
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occur when one does not make the proper distinctions. This
approach also serves to illustrate the power of the methods
described in the present article.

The mathematical development below is presented using
Dirac notation. For those who are not familiar with this notation,
in the present context, one can simply assume that the ket|v〉
represents a column vector and that the bra〈v| represents a row
vector. With this small difference, everything else is the same
as in ordinary matrix algebra.

Formulation of the Multiple-Well Master Equation

In the present context, the most primitive form of the master
equation can be written as

whereni(t) is the probability of finding the system (molecule)
in statei at time t andpij is the probability per unit time of a
transition from statej to statei. If we deal with a large ensemble
of molecules, we can regardni(t) as a number density or
population. The master equation, eq 1, is a stochastic differential
equation of the “Markov” type describing the time evolution
of the populations,ni(t). Pilling and Robertson18 discuss its place
in the theory of stochastic processes, where it is called the
“forward equation”, and its relationship to the Chapman-
Kolmogorov equation. We shall not repeat that discussion here.
We only note that eq 1 is Markovian because thepij ’s do not
depend explicitly on the time or past history of the populations.
Such a model is applicable to the problems of interest to us as
long as the characteristic times for intramolecular motion are
much smaller than the time between collisions. This is always
the case for dilute gases, and we can apply the model with
impunity to any problem that interests us.

Equation 1 is also sometimes called the Pauli equation or
the Pauli master equation.29 Wolfgang Pauli,30 in 1928, derived
an equation of the same form as eq 1 from the Schrodinger
equation describing the time evolution of a many-body system.
Pauli’s equation is valid under conditions that require the
microscopic processes underlying the transition probabilities,
pij, to be chaotic, thus making the equation itself Markovian.
Consequently, the master equation, the Pauli equation, and the
forward equation are really all the same entity.

The populations,ni(t), in eq 1 generally refer to quantum
states, or at least to small numbers of quantum states. How-
ever, in principle, any linear system of first-order rate equations
is of the form given by eq 1 and could be called a master
equation. This appears to be the spirit in which the term is used
in treating problems involving atomic clusters, peptides, and
proteins.31-33

In molecules other than diatomics, there are too many states
at energies of interest to resolve them all. Since we are primarily
interested in fairly large, polyatomic molecules (or collision
complexes), it is necessary to adopt a contracted, coarse-grained
description of these molecular systems. Instead of solving a
master equation for the populations of individual states, we
formulate our ME in terms of populations of states with energies
betweenE andE + dE, or populations of states with energies
betweenE and E + dE and with a total angular momentum
quantum number equal toJ. A subtle consequence of this
contracted description is that it forces the RRKM approximation
on us. The RRKM approximation is equivalent to the assumption
of microcanonical,J-resolved equilibrium in the reacting
complex; it distinguishes the reactivity of states only by the
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dni(t)
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) ∑
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(pijnj(t) - pjini(t)) (1)
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good constants of the motion in the isolated molecule (or
complex), the total energy and the total angular momentum.
Quite frequently, states are distinguished only by their total
energy.

Generally, the transition probabilities appearing in eq 1 are
of only two types, reactive and collisional. In astrophysical
problems, radiative processes can also be significant, but they
are negligible for applications that interest us here. To be
concrete about the problem definition, we envision an experi-
mental situation in which we are trying to measure the rate
coefficient and product distribution for the reaction

where the reactants m and R are heavily diluted in a bath of
the inert gas B. Moreover, as is commonly the case in such
experiments, we assume that one of the reactants, m, is
maintained at a concentration that is in great excess over that
of the other, R, thus rendering the reaction pseudo-first-order
in nR, the number density (or concentration) of R. Thus the
following inequality holds:

wherenB is the number density of the inert diluent andnm is
that for the “excess” reactant. Typically, R is a radical and m
is a molecule, but the analysis below applies regardless of the
nature of R and m. The master equation for such conditions is
linear and can be written as

In eq 3a,ni(E,J) dE is the concentration of isomeri of the
complex (corresponding to theith well of the potential) with
an energy betweenE andE + dE and with angular momentum
quantum numberJ; Zi is the collision rate of complexi with
the diluent molecules;E0i is the ground-state energy of isomer
i; Pi(E,J;E′,J′) is the probability that a collision will transfer a
molecule in welli from a state with an energy betweenE′ and
E′ + dE′ and with angular momentum quantum numberJ′ to a
state with an energy betweenE and E + dE and angular
momentum quantum numberJ; kij(E,J) is the unimolecular rate
coefficient for isomerization from wellj to well i; kdi is the rate
coefficient for dissociation of isomeri to the reactants m and
R; kpi(E,J) is the analogous rate coefficient for dissociation from
well i to a set of bimolecular products,p; Np is the number of
such sets of products;M is the number of wells;kai(E,J) is the
association rate coefficient for the formation of isomeri from
the reactants;QRm(T) is the reactant partition function (including
relative translational motion);FRm(E,J) is the corresponding,
J-resolved density of states; andâ ) (kBT)-1, where kB is
Boltzmann’s constant. In principle, one should also include
terms in eq 3a that describe reassociation of the bimolecular
products. We discuss such a formulation for the general case
below. However, in practice, we neglect these terms, and
consequently, we do not include them in eq 3a or the equations
that follow.

We can cast eq 3a in a more usable form by applying
microscopic reversibility to the R+ m a i reaction, thus
replacingkai(E,J) FRm(E,J)e-âE/QRm(T) by Keqi(T) kdi(E,J) Fi(E,J),
whereKeqi(T) is the equilibrium constant for the R+ m a i
association reaction andFi(E,J) is the equilibrium population
distribution in well i at temperatureT

In eq 4,Qi(T) is the vibrational-rotational partition function
for the ith well and Fi(E,J) is the correspondingJ-resolved
density of states. The ME becomes

Both forms of the association rate term in the master equation
assume that the reactants, m and R, are maintained in thermal
equilibrium with the bath gas throughout the course of the
reaction. The form shown in eq 3b has the advantage that it
does not require the explicit calculation ofFRm(E,J), which is a
complicated convolution of the state densities of the two
fragments R and m. Nevertheless, we utilize both formulations
in the discussion below. In chemical kinetics problems, it is
common to use the one-dimensional form of eq 3b in whichE
is the only independent variable, rather than the two-dimensional
formulation in terms of bothE and J. This is an enormous
simplification. It is useful to write out the one-dimensional ME
for clarity:

The second of the inequalities (2) implies thatnm ) constant,
thus “linearizing” the master equation. Consequently, we need
only to add a rate equation fornR(t) in order to close the system.
Again assuming that the reactants are always in thermal
equilibrium with the bath gas, we can write such an equation
in the following form:

We should note that the assumption of thermal equilibrium for
the reactants is not very restrictive. All combustion, atmospheric-
chemistry, and chemical-vapor-deposition modeling makes this
assumption, and experiment suggests that it is accurate. The

R + m a products

nB . nm . nR (2)

dni(E,J)

dt
) Zi∑

J′
∫E0i

∞
Pi(E,J;E′,J′) ni(E′,J′) dE′ - Zini(E,J) -

∑
j*i

M

kji(E,J) ni(E,J) + ∑
j*i

M

kij(E,J) nj(E,J) - kdi
(E,J) ni(E,J) +

kai
(E,J) nRnmFRm(E,J)e-âE/QRm - ∑

p)1

Np

kpi
(E,J) ni(E,J)

i ) I, ... ,M (3a)

Fi(E,J) ) Fi(E,J)e-âE/Qi(T) (4)

dni(E,J)

dt
) Zi∑

J′
∫E0i

∞
Pi(E,J;E′,J′) ni(E′,J′) dE′ - Zini(E,J) -

∑
j*i

M

kji(E,J) ni(E,J) + ∑
j*i

M

kij(E,J) nj(E,J) - kdi
(E,J) ni(E,J) +

Keqi
kdi

(E,J) Fi(E,J)nRnm - ∑
p)1

Np

kpi
(E,J) ni(E,J)

i ) I, ... ,M (3b)

dni(E)

dt
) Zi∫E0i

∞
Pi(E,E′) ni(E′) dE′ - Zini(E) -

∑
j*i

M

kji(E) ni(E) + ∑
j*i

M

kij(E) nj(E) - kdi
(E) ni(E) +

Keqikdi
(E) Fi(E)nRnm - ∑

p)1

Np

kpi
(E) ni(E)

i ) I, ... ,M (3c)

dnR

dt
) ∑

i)I

M ∫E0i

∞
kdi

(E) ni(E) dE -

nRnm∑
i)I

M

Keqi
∫E0i

∞
kdi

(E) Fi(E) dE (5)
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form of the rate equation fornR(t) given in eq 5 is one-
dimensional; the extension to two dimensions should be
straightforward. Equations 3 and 5 constitute a set ofM + 1
integro-differential equations for the unknown populations,
ni(E) andnR in the one-dimensional case. Except for the analysis
of the collisionless limit given below, unless noted explicitly,
we limit the remainder of our discussion of multiple-well
problems to the one-dimensional case.

The form of the collisional energy transfer term in eq 3c
implies two assumptions: (1) that any rate coefficient for energy
transfer is factorable into a collision rate,Z(E′), and a probability
density function,P(E,E′), (2) and thatZ(E′) ) Z, a constant
independent of energy.

These assumptions are not restrictive as long as the value of
Z is sufficiently large and as long asZ andP(E,E′) are chosen
consistently; that is, one must define a collision the same way
in calculating both of these two quantities.34-38 It is common
practice to takeZ to beZLJ, the Lennard-Jones collision rate.
Such a choice is probably sufficiently accurate for weak colliders
(atoms and diatomic molecules), but it fails miserably for large
molecules and molecules with permanent dipole moments.39-41

We have takenZ ) ZLJ in all our work to date. This choice
facilitates comparison of our derived or assumed energy transfer
parameters with those of other workers, who virtually always
assumeZ ) ZLJ s the Lennard-Jones collision rate has become
a de facto standard.

Similarly, it is common practice in master equation modeling
to assume a single-exponential-down function forP(E,E′), in
which

whereCN(E′) is a normalization constant and∆E ) E′ - E.
The activating wing ofP(E,E′) is determined from detailed
balance. The use of eq 6 forP(E,E′) is simply a matter of
convenience: the parameterR is equal to〈∆Ed〉, the average
energy transferred in a deactivating collision, as long asE′ .
R. However, it is fairly clear now, both from classical trajectory
calculations and from experiments thatP(E,E′) is more ac-
curately represented as a biexponential or some other function
with a long tail. Thermal dissociation/recombination rate coef-
ficients are not very sensitive to the form ofP(E,E′), just to
〈∆Ed〉 or 〈∆E〉, the average energy transferred in all collisions.
This may not be the case, however, for bimolecular reactions
over potential wells, particularly those for which potential energy
barriers to isomerization or fragmentation to bimolecular
products lie much lower in energy than the reactants. An
encumbrance to using more complicated (and accurate)P(E,E′)
functions is that more parameters must be assigned in these
cases, and there are no systematic procedures available for
assigning them in general. Consequently, the single-exponential-
down model forP(E,E′) is used almost exclusively in master
equation modeling, withR being a function of temperature, or
temperature and energy, in some cases.

Our master equation model requires rate coefficients,k(E,J)
or k(E), for all the various isomerization and dissociation/
recombination processes involved in the reaction. These rate
coefficients in turn require accurate information about the
potential energy surface (PES). Discussing electronic-structure
methodology would take us too far afield, so we shall not do
that here. The methods employed for any particular application
are discussed in our papers on those applications.42-58 Values
of k(E,J) are determined from the PES using transition-state
theory (TST), usually conventional TST for isomerization and

variational TST for dissociation/recombination reactions, whether
the latter have an intrinsic barrier or not. Again, the precise
methodology can vary from application to application, and it is
best to consult specific articles for details of the methods
employed.42-58

There is a subtle, but important, point to be made about the
transition probabilities,pij, and rate coefficients, includingkainm

and ZP(E,J;E′,J′), that appear in the master equations given
above. These parameters are in fact flux coefficients. They are
computed on a microscopic level as fluxes from one state to
another, or from one set of states to another. They can be inter-
preted unambiguously as the probabilities per unit time of mak-
ing the indicated transitions. This is in sharp contrast to the
phenomenological rate coefficients that we derive below from
the master equation. In this latter case, to obtain unambiguous
results, one must appeal to the fundamental definition of a rate
coefficient in terms of the time evolution of the species con-
centrations in a closed system. In general, this is a fundamental
distinction between the microscopic master equation and an
arbitrary system of phenomenological rate equations. One should
be aware that application of the steady-state approximation to
the master equation (i.e., seeking solutions to atime-independent
master equation) is virtually always an attempt to equate a
phenomenological rate coefficient to a flux coefficient. Some-
times this is a valid approach, and sometimes it is not.

Solving the Master Equation and Obtaining
Phenomenological Rate Coefficients from Its Solution

The Limiting Cases.The master equation has been formu-
lated and solved many times in the past in a number of different
ways (the articles by Fernandez-Ramos et al.59 and Pilling and
Robertson10 give extensive lists of references). There even have
been several attempts to solve the two-dimensional ME in some
special cases.60-66 However, as noted in the Introduction, we
restrict our attention in this article, for the most part, to the
one-dimensional problem. Nevertheless, for bimolecular reac-
tions involving potential wells, there is an important case for
which one can solve the 2-D ME almost as easily as the 1-D
problem. That case is the collisionless (or zero-pressure) limit,
obtained by taking the limitZ f 0 in the master equation. Many
important reactions actually occur under nearly collisionless
conditions in practical applications, particularly reactions that
involve a relatively small number of atoms and relatively
shallow wells. The classic example is the reaction between NH2

and NO.57,67 Moreover, since in the absence of collisions,J is
a good constant of the motion during the entire course of the
reaction, comparing 2-D solutions of the ME with their 1-D
counterparts might be expected to give the maximum effect of
angular momentum conservation on the thermal rate coefficients.

In the paper by Hahn et al.,54 we derived general expressions
for |k0〉, the vector (in Dirac notation) of rate coefficients for
producing the various sets of bimolecular products in the absence
of collisions. This derivation is a generalization of that originally
given by Miller, Parrish, and Brown.68 We summarize the results
here. If one takes the limitZ f 0 in eq 3a, the resulting equation
can be written in the vector form

where |n(E,J)〉 is the vector of population densities for given
values ofE andJ, that is, each component of the vector consists
of the population of a different well at the particularE andJ

P(E,E′) ) 1
CN(E′)

exp(-∆E/R), E e E′ (6)

d|n(E,J)〉
dt

)

-K(E,J)|n(E,J)〉 + nRnm|b(E,J)〉FRm(E,J)e-âE/QRm (7)
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values under consideration. The elements of the matrixK(E,J)
are algebraic sums of isomerization and dissociation rate
coefficients; its diagonal entries are all positive, and its off-
diagonal entries are all negative. The|b(E,J)〉 vector contains
all of the association rate coefficients (microcanonical,J-
resolved). Applying the steady-state approximation to eq 7,
solving for|n(E,J)〉, and substituting into the equation describing
the rate of formation of bimolecular products,

one obtains an expression for the rate of formation of the
products,

In equations 8 and 9, the components of|P(E,J)〉 are the number
densities per unit energy of the different sets of bimolecular
products,K-1(E,J) is the inverse of theK(E,J) matrix, andD(E,J)
is the matrix whosei, j element is the dissociation rate coefficient
from well j to producti. Note thatD(E,J), K(E,J), and|b(E,J)〉
can be very sparse, because not every well is directly connected
to every other well, and any particular well need not be directly
connected to the reactants or any particular set of products.

If one integrates eq 9 overE and sums overJ, the vector of
thermal rate coefficients is easily identified as the factor
multiplying nRnm

One can go one step further and eliminate the troublesome den-
sity of states,FRm(E,J), from eq 10a by substituting the RRKM
expression,k(E,J) ) N†(E,J)/hF(E,J), for all the rate coefficients,
whereh is Planck’s constant, andN†(E,J)/h may be regarded
as a flux per unit energy through the relevant transition-state
dividing surface. When this substitution is made,all the densities
of states cancel out,68 and we are left with the result

whereND, NK
-1, and|Nb〉 are related toD, K-1, and|b〉 in that

the former contain only the numeratorN†(E,J) in the corre-
sponding rate-coefficient expression of the latter. Of course, the
components of the vector|k0(T)〉 are the phenomenological rate
coefficients for all the bimolecular product channels. The
advantage of eq 10b is that one never has to evaluate the
densities of states of the complexes or the reactants in using it.
It can be useful and instructive to think of eq 10 as defining a
matrix/integral operator that transforms the microcanonical/J-
resolved association rate coefficients (fluxes) into the phenom-
enological, collisionless-limit rate coefficients. The reader should
be able to write down by inspection the analogous operators
(and equations) for the case whereJ is not conserved.

The other limit that is of interest is that corresponding toZ
f ∞, that is, the high-pressure or infinite-pressure limit. These

rate coefficients can be computed simply as “capture” rate
coefficients, that is,

Note that the components of|k∞(T)〉 and|Nb(E,J)〉 are zero unless
the product of the reaction corresponds to a well that is directly
connected to the reactants. Of course, one can simplify eq 11
further if one chooses to implement conventional transition-
state theory in calculating the fluxes and to neglect tunneling
(in which case the rate coefficients can be expressed in terms
of ratios of canonical partition functions). However, we rarely
choose to implement such approximations. In the present limit,
that is, Z f ∞, collisions are so dominant in the complexes
that thermal equilibrium is established before any subsequent
reaction can take place. Therefore, the only products formed
are the initial adducts. A similar situation arises in isomerization.
As Z f ∞, only isomerization between adjacent configurations
occurs. However, at lower pressures, isomerization can “skip
wells”. We illustrate this point below for allene isomerizing to
propyne and cyclopropene.

Equation 11 has a form similar to that of eq 10b in that both
can be viewed as defining operators that transform the micro-
canonical/J-resolved association fluxes into phenomenological
rate coefficients. Alternatively, if one takes the summation over
J inside the integral in the two equations, it is easy to recognize
that |k0〉 and |k∞〉 are both Laplace transforms of functions of
the various fluxes involved in the problem, withâ being the
Laplace transform variable. Note that, because of the nature of
the two limiting conditions, both|k0〉 and |k∞〉 are flux
coefficients. The steady-state approximation is universally
applicable in the collisionless limit, because the lifetime of the
complex is necessarily much smaller than the time between the
formation of complexes under such conditions. In both limits,
thermal equilibrium exists in both the reactants and products,
and energy-transferring collisions play no role in determining
the rate coefficients.The general rule is that the phenomeno-
logical rate coefficient and the instantaneous flux coefficient,
which remains constant in time, are identical if the reactants
and all the products can be assumed to be in complete thermal
equilibrium. Under such conditions, the forward and reVerse
rate coefficients can be treated independently and approximated
as flux coefficients. This point is discussed again below. Note
that in this context “complete thermal equilibrium” refers to all
energy levels, not just the low-lying ones that determine the
temperature.

The General Case.As noted above, in general, it is necessary
to probe the time evolution of the system under consideration
to determine phenomenological or thermal rate coefficients.
However, there are two special cases for which this approach
is not necessary: a direct abstraction reaction and any simple
association/dissociation or isomerization reaction that is occur-
ring in its high-pressure limit. In both of these cases, one can
safely assume that both the reactants and products are in thermal
equilibrium. In such cases, the phenomenological rate coefficient
is equal to the “equilibrium rate coefficient”,keq, another rate
parameter discussed by Widom. The equilibrium rate coefficient
is a flux coefficient and is the long-time limit of the instanta-
neous flux coefficient (Widom’s “r”) for any two-configuration
elementary reaction. Of course, in general, the latter is time
dependent.

Now, let us describe how we go about solving the one-
dimensional master equation and obtaining phenomenological

d|P(E,J)〉
dt

) D(E,J)|n(E,J)〉 (8)

d|P(E,J)〉
dt

)

D(E,J) K-1(E,J)|b(E,J)〉nRnmFRm(E,J)e-âE/QRm(T) (9)

|k0(T)〉 )
1

QRm(T)
∑

J

(2J + 1)∫0

∞
D(E,J) K-1(E,J)|b(E,J)〉FRm(E,J)e-âE dE

(10a)

|k0(T)〉 )
1

hQRm(T)
∑

J

(2J + 1)∫0

∞
ND(E,J) NK

-1(E,J)|Nb(E,J)〉e-âE dE

(10b)

|k∞(T)〉 )
1

hQRm
∑

J

(2J + 1)∫0

∞|Nb(E,J)〉e-âE dE (11)
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rate coefficients from properties of its solution. First, let us
consider a slightly more general approach than the one we
actually use. To this end, assume that we have added terms to
the ME, analogous to theKeqikdiFi(E)nRnm term on the right-
hand side of eq 3c, that describe reassociation of the bimolecular
products. Furthermore, let us assume that for each set of
bimolecular products one of the components is maintained in
great excess, analogous tonm for the reactants. Of course, we
must add an equation similar to eq 5 for the deficient component
in each of these sets of products. These assumptions maintain
the linearity of the master equation and allow us to treat all the
chemical configurations (wells, bimolecular products, and
bimolecular reactants) equally in the analysis. We could
relatively easily work with the expanded master equation just
described, but instead, we assume in practice that any set of
bimolecular products represents an “infinite sink”, that is, that
such products, once they are formed, never return to the wells.
We describe this approximation after we deal with the more
general case.

Equations 3c, 5, and an equation analogous to eq 5 for the
“deficient reactant” in each set of bimolecular products can be
combined into one (vector) master equation. After representing
the integrals in these equations as discrete sums using a simple
rectangle rule with grid spacingδE, one can cast the ME into
the form58

where G is a real, symmetric (and consequently Hermitian)
matrix, and|w(t)〉 is a vector containing the (scaled) unknown
populations

In this last equation,yi(E,t) ) xi(E,t)/fi(E), where fi2(E) )
Fi(E) Qi(T), xi(E,t)δE is the fraction of the initial reactant
concentration that is present in welli with an energy between
E andE + δE at timet, andXR is the fraction that is present as
R at time t. Note that the term “reactant” here can refer to R,
one of the other bimolecular configurations, or one of the wells.
The three dots at the end indicate that there is a component of
the vector of the same form as (nm/QRmδE)1/2XR for each set of
bimolecular products.

The Hermiticity of the transition matrixG allows us to solve
eq 12 in exactly the same way that one obtains the general
solution of the time-dependent Schrodinger equation. One first
solves for the eigenvalues and an orthonormal set of eigenvectors
of G

Expanding|w(t)〉 in this basis, one can write the solution vector
in the form

where|w(0)〉 is the initial-conditions vector andT̂ is the time
evolution operator

In eq 16,N is the number of eigenpairs,N ) ∑i)I
M Ni + Np + 1,

andNi is the number of grid points in welli; the 1 is for the
bimolecular reactants.

The eigenvalues ofG are always real (becauseG is Hermitian)
and nonpositive (either zero or negative). In the present
formulation, there is exactly one zero eigenvalue,λ0 ) 0, whose
corresponding eigenvector yields the relative state populations
at complete thermal and chemical equilibrium. The remainder
of the eigenvalues must be negative

or the solution to the ME (eqs 15 and 16) would blow up ast
f ∞. We refer to the second largest (the least negative) eigen-
value ofG asλ1, the third largest asλ2, and so on; the corres-
ponding eigenvectors are|g1〉, |g2〉, and so forth. Once one has
the solution vector, it is a straightforward matter to obtain the
species concentrations (or macroscopic populations) either
directly (for the bimolecular components) or from the integral

for the wells. Ultimately, it is these species concentrations that
interest us, not the individual energy-level populations.

Widom27,69,70describes the eigenpairs ofG, λi,|gi〉, as “normal
modes of relaxation” of the system, eigenmodes. They describe
the system’s approach to complete thermal and chemical equil-
ibrium from an arbitrary initial condition.N, as defined above,
is almost always a number in the thousands. However, the vast
majority of these modes do not describe chemical change. They
simply adjust the relative populations,xi(E,t), without signifi-
cantly changing the integral,Xi(t). They describe the relaxation
of the internal (rotational-vibrational) energy of the molecules
whose stable structures correspond to the bottoms of the wells.
We refer to these eigenmodes as IEREs (internal-energy
relaxation eigenmodes, eigenpairs, or eigenvalues). The remain-
der are CSEs (chemically significant eigenvalues, eigenpairs,
or eigenmodes). Under conditions where a phenomenological
description of the chemical kinetics might normally be expected
to apply (i.e., a description in terms of elementary reactions
and rate coefficients), the IEREs relax orders of magnitude more
rapidly than do the CSEs. This is enormously useful in
simplifying the task of obtaining thermal rate coefficients from
the eigenvalues and eigenvectors ofG. In fact, one might argue
that such a separation of time scales is essential for a useful
phenomenological description of the chemical kinetics to apply.

If there are S species, or chemical configurations, in a
problem, there are

chemically significant eigenmodes in addition toλ0, |g0〉. It is
very important to understand whyNchem is equal toS - 1 and
what the function is of each of these eigenmodes. Let us answer
the first question first. Although we do not know the rate
coefficients yet, suppose that we attempt to describe the
chemical kinetics of the problem with a set of rate equations.
Of course, there must beS first-order rate equations (including
pseudo-first-order processes), which can be expressed in matrix
form as

where Kr is an S× S matrix made up of the thermal rate

d|w(t)〉
dt

) G|w(t)〉 (12)

|w(t)〉 ) [yI(E0I
), ... ,yI(El), ... ,yi(E0i

), ... ,yi(El), ... ,

( nm

QRmδE)1/2

XR, ...]T

(13)

G|gj〉 ) λj|gj〉 (14)

|w(t)〉 ) T̂|w(0)〉 (15)

T̂ ) ∑
j)0

N-1

eλjt|gj〉〈gj| (16)

λj < 0, j ) 1, ... ,N - 1 (17)

Xi(t) ) ∫E0i

∞
xi(E,t) dE (18)

Nchem) S- 1 (19)

d|n〉
dt

) Kr|n〉 (20)
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coefficients. AlthoughKr is not necessarily Hermitian, we can
go about solving eq 20 in exactly the same way that we solved
the ME itself, that is, by diagonalizingKr and expanding|n〉 in
terms of these eigenvectors. Barring special circumstances,Kr

will haveSeigenvalues andSlinearly independent eigenvectors,
and the solution will be expressible as a linear combination of
exponential functions of the form eηjt, whereηj is an eigenvalue
of Kr. There must be anη0 ) 0 in order to force the
concentrations to approach constant, nonzero (equilibrium)
values ast f ∞. The remainingS - 1 eigenmodes ofKr are
macroscopically equivalent to theS - 1 CSEs of the master
equation. It is this macroscopic equivalence that allows us to
relate the rate coefficients to the eigenvalues and eigenvectors
of G. In fact, we can infer thatλj ) ηj, which of course must
be rigorously true, since both solutions are unique for a given
set of initial conditions and describe the same physical processes.

Now let us answer the second question posed above. The
establishment of chemical equilibrium occurs in well-defined
stages. Each of the chemically significant eigenmodes describes
the approach to chemical equilibrium of one species with one
or more other species (although other chemical change can occur
simultaneously). To understand this point, it is helpful to
consider a simple, but nontrivial example. Suppose thatS) 4,
and let us call the four speciesS1, S2, S3, andS4. One way of
approaching equilibrium is for the fastest-relaxing CSE to
equilibrateS1 with S2. Then,λ2,|g2〉 could equilibrateS3 with
theS1,S2 pair, and the slowest-relaxing mode could equilibrate
S4 with the other three, thus establishing complete chemical
equilibrium. Alternatively,λ2,|g2〉 could equilibrateS3 with S4,
and λ1,|g1〉, the slowest-relaxing CSE, would then equilibrate
the S1,S2 pair with the S3,S4 pair. Obviously, other ways of
establishing equilibrium can be envisioned in the present
example simply by permuting the subscripts on theS’s. In more
complicated problems, the number of possible ways that
chemical equilibrium can be reached is quite large. Nevertheless,
there are alwaysS - 1 chemically significant eigenmodes.

For a problem withS species, there areNk reversible
elementary reactions occurring simultaneously, where

If S) 2, Nk ) Nchem) 1, and we can obtain both the forward
and reverse rate coefficients from the single eigenvalue,λ1, and
the equilibrium constant. However, in our recent study of
propargyl recombination, there were 12 wells and two sets of
bimolecular products, makingS ) 15, Nchem ) 14, andNk )
105. The actual value ofNk is almost always slightly smaller
than that given by eq 21 because of our assumption that the
bimolecular products constitute an infinite sink.NeVertheless,
it is this large number of elementary reactions, all occurring
simultaneously, that makes it difficult to obtain the phenom-
enological rate coefficients directly from the time histories that
come from the solution to the master equation.

Under conditions where the IEREs relax faster than the CSEs,
the macroscopic populations can be written as

after the IEREs relax to zero. ThepR’s (R ) 1, ...) represent
the different sets of bimolecular configurations other than R.
The coefficientai0 ) Xi(∞) is the equilibrium population of the
ith species, and

where ∆Xij is the population change of theith species that
accompanies the time evolution of thejth eigenpair fromt ) 0
to t ) ∞. The values of the∆Xij ’s thus depend on the initial
condition, but they can be readily calculated from the solution
to the ME. Theaij ’s and theλj’s are the fundamental quantities
needed to calculate the phenomenological rate coefficients.

We have derived two different methods of obtaining the rate
coefficients from the chemically significant eigenpairs. The first
method, which we call the initial-rate method, utilizes different
initial conditions in evaluating theaij ’s in eq 22. Differentiating
this equation with respect to time and taking the limitt f 0
results in the rate-coefficient expressions51

wherekTi is the total rate coefficient for converting speciesi to
all products andkil is thei f l rate coefficient. The superscript
“( i)” on ∆Xij and∆Xlj indicates that speciesi must be the initial
reactant. This method is applicable only as long as|λNchem| ,
|λNchem+1|, since “t ) 0” must be well defined. In other words,
there must exist a time period when all the IEREs have relaxed
to zero, but no reaction has occurred. In general, this condition
is not considered to be very restrictive. It is frequently presumed
to be a necessary condition for a rate-coefficient description of
the kinetics to apply.

The second approach is what we call the long-time method.
It consists of recognizing that eq 22 is of the same form as the
solution to eq 20, that is, the solution to a system of first-order
rate equations. The task is to solve the inverse problem of
finding the phenomenological rate coefficients for the system
of reactions that generated the particular solution at hand. We
solved this problem and obtained the following results for the
rate coefficients:51

In eqs 25, if theaij ’s are taken to be the elements of a matrix,
A, thebij ’s are the elements of its inverse,B ) A-1. Equations
25 applies to all initial conditions, and more importantly, eq 22
(and thus the rate coefficients derived from it, eqs 25) is
applicable as long as|λNchem| < |λNchem+1|, a less restrictive
condition than that necessary for the initial-rate method to apply.
As long as the vibrational-rotational relaxation period is over
before the chemistry is complete, there will be at least a short
period of time, late in the course of the reaction, when a
phenomenological description of the chemical kinetics will
apply, with the rate coefficients given by eqs 25. It is sufficient
that there exist a distinguishable period of time, however small,
when eq 22 applies.

For most conditions, the initial-rate method and the long-
time method give the same values for the rate coefficients.
However, as the magnitude ofλNchem increases and approaches

Nk ) ∑
n)1

S-1

n )
S(S- 1)

2
(21)

Xi(t) ) ∑
j)0

Nchem

aije
λjt, i ) I, ... ,M, R, p1, ... (22)

aij ) -∆Xij, j * 0 (23)

kTi ) ∑
j)1

Nchem

λj∆Xij
(i)

(24)

kil ) - ∑
j)1

Nchem

λj∆Xlj
(i)

kTi ) - ∑
j)0

Nchem

λjaijbji

(25)

kil ) ∑
j)0

Nchem

λjaljbji
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that of λNchem+1 at high temperatures, the long-time method
continues to yield good values for the rate coefficients when
the initial-rate method fails. Nevertheless, the initial-rate ap-
proach is most commonly the method of choice, simply because
it is easier to apply.

Blitz et al.21 recently derived different, but equivalent,
expressions for the long-time rate coefficients. They worked
directly with the ME, rather than with its solution. Thus, there
was no constant of integration requiring an initial condition.
As a result, they were able to show explicitly that the rate
coefficients obtained are independent of the initial condition.

In a seminal paper in 1974, Bartis and Widom71 used an
approach to the rate-coefficient problem similar to the long-
time method described above, but with an additional assumption.
The essence of this assumption is that, during the course of the
reaction, the state populations are not perturbed greatly from
their equilibrium values. With this assumption, Bartis and
Widom derived rate-coefficient expressions analogous to eq 25
that satisfy detailed balance exactly; that is, the forward rate
coefficient divided by the reverse rate coefficient equals the
equilibrium constant. Although no proof exists that the rate-
coefficient expressions given above satisfy detailed balance, they
normally do, at least to within numerical error. We believe that
detailed balance is universally valid, although no rigorous proof
exists for more than “two-configuration” problems.

The rate coefficients that one derives from eqs 24 and 25 are
first-order or pseudo-first-order rate coefficients. In cases where
the reactions are really bimolecular, one must divide these rate
coefficients bynm or its equivalent to obtain the true rate
coefficients. The device introduced above to linearize the master
equation, particularly that of including a species in excess for
all the bimolecular products, may seem somewhat artificial at
first. However, one must bear in mind that our objective is to
obtain the rate coefficients, which are assumed to be transport-
able to other environments, not to simulate the time evolution
corresponding to any particular experimental condition.

In practice, we do not use the above methods exactly. Instead,
we approximate all but one set of bimolecular fragments, the
reactants R and m, as infinite sinks.51 How does this change
the procedures discussed above? Not very much it turns out.
With the infinite-sink approximation, two differences appear
in the above analysis: the system does not approach chemical
equilibrium at long times, and one cannot compute∆Xij for the
sinks explicitly from the solution to the ME. However, one can
still obtain these quantities in a relatively straightforward
manner. Assume that there is only one set of bimolecular
products. The macroscopic populations satisfy the global
conservation equation

Differentiating this equation with respect to time and then
integrating fromt ) 0 to t ) ∞, one obtains

Because the terms in eqs 16 and 22 are linearly independent
functions of time, at least as long as no two eigenvalues are
equal, eq 27 must be satisfied by each eigenpair individually,
not just globally, that is,

Thus, after obtaining∆XRj and ∆Xij from the solution to the
ME, one can calculate∆Xpj from eq 28. These results, coupled
with the obvious long-time limits,

and

can be inserted into eqs 24 and 25 to obtain the thermal rate
coefficients.

It is just slightly more difficult to obtain the∆X’s for the
bimolecular products and thet f ∞ population limits when there
is more than one set of such products. We shall not discuss this
case here. The derivation is given in detail in our paper on
reactions that occur on a C3H4 potential.50

It happens frequently in practical applications that at high
temperatures the large separation between the magnitudes of
the CSEs and those of the IEREs ceases to exist. What happens
is that a CSE increases in magnitude with temperature until it
approaches the quasi-continuum of IEREs and then becomes
indistinguishable from them. We can still determine rate
coefficients under such conditions. One must first identify the
function of the particular eigenpair that is being absorbed by
the IEREs, and then at higher temperatures we combine the
two (or more) species being equilibrated into one compound
species. One then can proceed as described above with the
values of S and Nchem reduced by 1. The conditions of
applicability of the two methods of determining the rate
coefficients must then be reinterpreted in terms of the reduced
set of species. The modification to the procedure required for
the initial-rate method is trivial; the number of terms in the sum
is reduced by 1 (reinterpretation of the∆X’s for the compound
species is also required in principle). The modification to the
long-time method, in general, requires a reformulation of the
problem. This makes it more difficult to implement, making
the initial-rate method the method of choice for most problems
at highT.

By the phrase “a reformulation of the problem” in the last
paragraph, we mean that, in the long-time method, one must
examine the solution, reconstruct theA andB matrices defined
above, and recalculate the rate coefficients from eq 25. This
involves considerably more effort than is required for the initial-
rate method and is difficult to automate in a computer
calculation. In the cases where we have gone to the trouble of
doing this reformulation for the long-time method, the two
approaches yield the same rate coefficients. Of course, for
problems with a large number of wells, and consequently a large
number of CSEs, one could conceivably encounter a situation
where, for a given pressure, it was not possible to find a
temperature where the initial-rate method was applicable. In
such situations, it would be necessary to use the more robust
long-time approach. However, we have not yet encountered such
a situation.

At low temperatures, it can be difficult numerically to obtain
accurate eigenvalues and eigenvectors ofG.53,72,94This problem
can be overcome in either of two ways:

(1) By doing the diagonalization in quadruple-precision
arithmetic, rather than double precision.72,94 This approach is
limited to relatively small problems.

XR + Xp + ∑
i)I

M

Xi ) 1 (26)

∆XR + ∆Xp + ∑
i)I

M

∆Xi ) 0 (27)

(∆XR + ∆Xp + ∑
i)I

M

∆Xi)j ) 0 (28)

Xp(∞) ) 1

XR(∞) ) Xi(∞) ) 0, i ) I, ... ,M (29)
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(2) By integrating the ME directly in time53 using an ODE
solver, resorting to the “exponential decay” approach51,53 to
determine rate coefficients and product distributions. This
approach is generally adequate at sufficiently low temperatures,
where the CSEs are well separated in magnitude and “interfer-
ence effects” such as those described in ref 51 can be avoided.
We have used both of these methods successfully at various
times.

Before going on to consider some examples it is useful to
review the relationship between a rate coefficient and a flux
coefficient. In doing so, we draw heavily upon Widom’s
discussion. Consider a first-order (or pseudo-first-order) reaction,
A a B involving only the two configurationsA andB. The net
rate of formation ofB (i.e., the net flux fromA to B) can be
written as

The question is “What arekf and kr?” One is instinctively
tempted to identifykfnA andkrnB as the individual forward and
reverse fluxes, respectively. In which case,kf and kr are the
probabilities per unit time of anA f B andB f A transition;
that is, they are flux coefficients. The problem with this
identification is that in generalkf andkr are both time dependent,
and they do not satisfy detailed balance. The true rate coef-
ficients satisfy eq 30, are not time dependent, and do satisfy
detailed balance. However, with the true rate coefficients
inserted into eq 30, the two terms on the right-hand side cannot
be interpreted as the individual forward and reverse fluxes. That
is the central issue. However, for many cases, the instantaneous
flux coefficients and the rate coefficients are virtually indistin-
guishable. For simple abstraction reactions and high-pressure-
limit, unimolecular isomerization or dissociation reactions, they
are identical, because thermal equilibrium is suitably maintained,
or assumed to be maintained, throughout the course of the
reaction. The equivalence of the two rate parameters in these
special cases is probably the origin of the confusion that exists
on this issue. The situation for nonequilibrium problems is
counterintuitive even in the two-configuration case; one must
expect it to be even more so for an arbitrary number of
configurations.

In many circumstances, we write the rate law simply as

We might write it this way, as in the theoretical analysis of
thermal dissociation, because we believe the reverse process
has no effect on the rate coefficient, or it can be that the second
term in eq 30 is negligible. In calculating the equilibrium rate
coefficients mentioned just above, the fluxes in the two
directions are independent and can be calculated separately.
Thus, we are always dealing with a rate law in the form of eq
31. In all such cases where eq 31 applies, the net flux and the
forward flux are identical, making the flux coefficient and the
rate coefficient the same parameter. Of course, the negligibility
of the second term in eq 30 is the idea behind the exponential
decay approach to measuring the rate coefficients at low
temperatures. Equation 30 also gives an exponential decay for
the reactant, but the decay is not to zero, and the decay constant
is not simply the rate coefficient.

Examples

The Reaction between Ethyl and Molecular Oxygen.A
particularly simple and instructive example of the power of the

methods described above is the reaction of C2H5 with O2. The
PES is depicted diagrammatically in Figure 1. We shall be
concerned here only with the bimolecular channel leading to
C2H4 + HO2 (and only the initial C2H5O2 adduct); it is
overwhelmingly dominant under the conditions of interest
anyway. The bimolecular products are incorporated into the
analysis as an infinite sink. Thus, we haveS ) 3, Nchem ) 2,
andNk ) 3. For future reference, the eigenvalue spectrum ofG
is plotted in Figure 2 for a pressure of 1 atm; the equilibration
functions of the CSEs are shown on the diagram.

Figure 3 displays the limiting rate coefficientsk0(T) and
k∞(T) and “rate coefficients”,kexp, derived from the exponential

dnB

dt
) -

dnA

dt
) kfnA - krnB (30)

-
dnA

dt
) kfnA (31)

Figure 1. Potential energy diagram for the C2H5 + O2 reaction.

Figure 2. Eigenvalue spectrum for C2H5 + O2 at p ) 1 atm. The
eigenvalues are divided bynm to show their relationship to the decay
constant.

Figure 3. Decay constants as a function of temperature at various
pressures for C2H5 + O2.
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decay of R, the reactant, at three different pressures (20 Torr,
1 atm, 10 atm). Both the 1-D and 2-D values fork0(T) are shown
on the plot. At 250 K, the smallest temperature shown, the 1-D
solution for k0(T) is about 15% larger than the 2-D solution;
the difference gradually becomes even smaller as the temper-
ature increases. Although in general such differences depend
on a number of factors, most notably the potential energy
difference between TS-1 and TS-2 (transition states 1 and 2,
respectively) and the corresponding rotational constants, the
present result is fairly typical. Consequently, angular momentum
conservation is usually not an important factor for bimolecular
reactions producing bimolecular products.

The exponential decay rate coefficients shown in Figure 3
display some intriguing features. At temperatures up toT ≈
575 K, one obtains excellent exponential decays, and the
distribution of products accumulated at the end of the decay
period depends on both temperature and pressure. The bimo-
lecular products C2H4 + HO2 are dominant at lower pressures,
and the stabilized adduct C2H5O2 becomes more and more
prevalent as the pressure is increased. Of course, this is the
expected behavior. In the temperature range roughly between
575 and 700 K, the good exponential decays disappear. Instead,
the reactant decay becomes biexponential. Then, again forT >
700 K, nearly perfect exponential decays of the reactant return.
However, now the rate coefficient becomes equal tok0(T), and
the only products are C2H4 + HO2, independent of temperature
and pressure.

The behavior at high temperature described in the previous
paragraph is remarkable. Some comments are in order. The
exponential decay approach to obtaining rate coefficients is
equivalent to computing a flux coefficient from a steady-state
energy distribution in the well. The discussion centered around
eq 31 indicates clearly that such coefficients can indeed be
interpreted as (constant) probabilities per unit time of making
the indicated transformations. At least for the case of the C2H4

+ HO2 products, this is not exactly what Widom had in mind
for his flux coefficients, but his discussion does not anticipate
the necessity of passing through two transition states to get from
reactants to products. The important question is “Have we really
determined rate coefficients?”

A critical point to bear in mind in answering this question is
thatexponential decay of the reactant indicates that the reaction
is controlled by a single chemically significant eigenmode of
G, not by a single elementary reaction(single-channel or
multiple-channel). At low temperatures, the two generally
coincide very closely, that is, eigenmode≈ multichannel
elementary reaction, at least partly because the CSEs are widely
separated in magnitude. However, this is not always the case,
particularly at highT. Referring to Figure 2, one can see that
λ2,|g2〉 describes the equilibration of C2H5 + O2 with C2H5O2

(C2H4 + HO2 can also be formed as a product). At low
temperatures, the reactant concentration decays exponentially
to zero, because the equilibrium constant is so large, at a rate
determined exclusively byλ2. The λ1,|g1〉 eigenpair describes
the “equilibration” of C2H5 + O2 and C2H5O2 with the C2H4 +
HO2 infinite sink. At low temperatures, this eigenmode can be
very closely identified with the thermal dissociation of C2H5O2

to form C2H4 + HO2, again because the C2H5 + O2 a C2H5O2

so heavily favors the adduct under such conditions.
From Figure 2, one can see thatλ1 and λ2 approach each

other in the 575 K< T < 700 K range (they approach more
closely as the pressure is reduced55), undergoing what might
be called an avoided crossing. In this region, what we have
previously called the transition regime,55,56 both eigenmodes

contribute to the decay of R, the reactant, and hence, we get
biexponential decays. When the two CSEs emerge from the
transition regime at highT, some important changes have
occurred. Theλ2,|g2〉 eigenpair still describes the equilibration
C2H5 + O2 a C2H5O2, but now this equilibrium heavily favors
C2H5 + O2; that is, the equilibrium has shifted. Also,λ1 and
|g1〉 still describe the equilibration of C2H5 + O2 and C2H5O2

with C2H4 + HO2, but because the equilibrium mixture of C2H5

+ O2 and C2H5O2 is virtually all the former, this eigenmode
results in nearly perfect exponential decays of the reactant. The
reason the apparent rate coefficients deduced from the reactant
decays in this high-temperature region are all equal tok0(T),
independent of pressure, is discussed in detail in ref 55. We
shall not repeat that discussion here.

Are the flux coefficients that are deduced from the exponential
decays in the high-temperature regime rate coefficients, or are
they not? It should be clear now that the answer to this question
is that they are not. The observed behavior is a consequence of
two processes (both of which can occur simultaneously): the
elementary reaction C2H5 + O2 f C2H4 + HO2 and the two-
step process, C2H5 + O2 a C2H5O2 followed by C2H5O2 f
C2H4 + HO2, both of whose rates are controlled by the same
transition state, TS-2 of Figure 1. (An elementary reaction is a
chemical process whose rate can be characterized by a single
phenomenological rate coefficient,k(T,p), under all thermally
equilibrated conditions, that is, whereT can be defined.) The
elementary reaction is dominant at low pressure, and the two-
step sequence is dominant at high pressure. The steady-state
energy distribution in the well varies from a chemically activated
one at low pressure to a completely thermally equilibrated one
at high pressure, just as at low temperature. Remarkably, simply
observing the decay of the reactant concentration and the rise
of the products is insufficient to distinguish one mechanism from
the other. However, the methodology described above for
determining the rate coefficients can make the distinction.

In Figure 4, we plot the rate coefficients for the two reactions,
C2H5 + O2 f C2H4 + HO2 and C2H5 + O2 f C2H5O2, as a
function of pressure for a temperature of 1000 K. A relatively
small fraction of the C2H5O2 formed from the stabilization
reaction dissociates thermally to form C2H4 + HO2; most of it
just dissociates back to C2H5 + O2. For the stabilization reaction,
the only one for which we can calculate forward and reverse
rate coefficients, detailed balance is satisfied to the numerical
accuracy of the calculation.

Allene-Propyne Isomerization.Perhaps the most counter-
intuitive phenomenon associated with the multiple-well master

Figure 4. Rate coefficients as a function of pressure atT ) 1000 K
for C2H5 + O2 f C2H5O2 and C2H5 + O2 f C2H4 + HO2.
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equation is anisomerization reaction that skips one or more
wells. Although in principle such a reaction is no different from
an association/dissociation reaction that skips a well, the
isomerization is more unexpected to the average chemical
kineticist. Such reactions are the best illustrations we have of
the difference between the rate coefficients, or transition
probabilities, that appear in the master equation and the rate
coefficients that appear in macroscopic rate laws. The former
are course-grained, statistical substitutes for dynamics, and
consequently, they connect only adjacent configurations. The
latter are purely phenomenological and are not bound by such
a constraint.

As an illustration of an isomerization reaction that skips a
well, consider the isomerization of allene50 (C3H4a). The
potential on which we base our analysis is illustrated in Figure
5. The diagram shows a number of configurations on the singlet
potential and indicates the possibility of a hydrogen abstraction
reaction, C3H3 + H f 3C3H2 + H2, where 3C3H2 is triplet
propargylene, on a triplet potential. This latter reaction will not
concern us further in this article. On the singlet PES, there are
seven distinct molecular configurations,S ) 7. However,
because we lump all three sets of bimolecular products (1C3H2

+ H2, 1H2CCC + H2, and c-C3H2 + H2) into an infinite sink,
our master equation recognizes onlyS ) 5, and consequently,
Nchem ) 4. If we were to takeS ) 7, there would beNk ) 21
forward elementary reactions going on simultaneously. How-
ever, because of the infinite-sink approximation,Nk ) 18. The
three reactions that are missing are ones that have sink species
both as reactants and products. Moreover, any reaction that has
a sink configuration as a product has its reverse reaction missing.

The eigenvalue spectrum atp ) 1 atm for the problem at
hand is shown in Figure 6. The equilibration functions of the
chemically significant eigenmodes are given on the plot. At low
temperatures, the fastest-relaxing CSE equilibrates C3H3 + H
(R) with C3H4p (I). The second fastest equilibrates R and I with
cyclopropene (III). The third fastest equilibrates these three
configurations with allene (II), and the slowest of the CSEs
“equilibrates” R, I, II, and III with the bimolecular sink. Because
we have labeled the eigenvalues in the diagram by their
functions, not by their magnitudes, there is some magnitude
switching at highT. Nevertheless, the diagram is labeled clearly
and correctly.

That brings us to the C3H4aa C3H4p isomerization. The rate
coefficients for both C3H4a f C3H4p and C3H4a f c-C3H4 are

shown in Figure 7 as a function of pressure at a temperature of
1300 K. Before going any further, it is important to point out
that TS-4 in Figure 5 is inconsequential to the analysis. We
could increase its energy to arbitrarily large values without

Figure 5. Potential energy diagram for the C3H4 surface.

Figure 6. Eigenvalue spectrum for the C3H4 potential energy surface.
The eigenvalues in the diagram are labeled by their function. In a similar
diagram in ref 50, we simply labeled the eigenvalues by their magnitude.

Figure 7. Rate coefficients for C3H4a f C3H4p and C3H4a f c-C3H4

as a function of pressure atT ) 1300 K.
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changing the results of Figure 7. All the propyne formed in the
reaction goes through the c-C3H4 well. At low pressures, the
c-C3H4* complexes do not suffer enough collisions for any
significant amount of stabilization to occur. Because of the
deeper well, C3H4p* complexes live longer, and stabilization
in this well dominates the reaction. As the pressure increases
up to about 104 Torr, both rate coefficients increase, a
consequence of increasing thermal excitation of the allene. Of
course, this is the same phenomenon as the one that occurs in
thermal dissociation. Beyond this pressure, the C3H4af C3H4p
rate coefficient drops off with increasingp, whereas that for
C3H4 f c-C3H4 continues to rise. The latter reaction increasingly
robs flux from the former. As discussed above, at infinite
pressure, the rate coefficient approachesk∞(T), and the only
product corresponds to an adjacent configuration, cyclopropene
in this case. Of course, one should realize that the C3H4a f
c-C3H4 reaction would be totally invisible in a normal kinetics
experiment, because equilibrium overwhelmingly favors the
reactant, with c-C3H4 thermally isomerizing back to allene as
fast as it is formed.

It is tempting to try to analyze the present reaction using
methods similar to those used for thermal dissociation. One
could apply the steady-state approximation to the allene well
and then calculate the flux coefficient for passage through TS-3
(N3

† ) N3a
† N3b

† /(N3a
† + N3b

† ) in our analysis50). The only objec-
tive approximation one could make about this flux is that it all
leads to c-C3H4, which of course is wrong. One might then try
to make assumptions concerning complex lifetimes (c-C3H4*
and C3H4p*) and collision rates, e.g., the strong-collider or
modified strong-collider assumption. However, such assump-
tions are unreliable and too arbitrary to form a basis for a
fundamental theory of reaction rates.

The C3H4 potential contains a wealth of interesting illustra-
tions of the multiple-well ME methodology. From Figure 6,
one can see (forp ) 1 atm) that atT ≈ 2150 Kλ3 merges with
the continuum of IEREs, indicating that the c-C3H4 a C3H4p
isomerization equilibrates on internal-energy relaxation time
scales. Thus, for kinetics purposes, c-C3H4 and C3H4p cease to
be independent species and must be combined into one
compound species (dominated by propyne) at higher tempera-
tures. Also, for temperatures greater than about 1800 K, allene
equilibrates with propyne (and thus also with cyclopropene)
faster than dissociation to C3H3 + H can occur,-λ2 < -λ4. At
T ) 2200 K,λ2/λ4 ≈ 6. At such temperatures (where dissociation
rate coefficients might be measurable), determining the indi-
vidual dissociation rate coefficients becomes problematic; most
experiments will be sensitive only toλ4, which describes the
dissociation of the three equilibrated isomers. In fact, before
reading this article, one might be tempted to look at Figure 5
(where all the isomerization barriers lie well below the dis-
sociation limit) and question whether individual dissociation rate
coefficients for the isomers even exist. Of course, they do exist.
Our calculations indicate that allene dissociates 10-20% faster
than propyne for 1800 K< T < 2500 K, whereas the
experiments of Kiefer et al.73 indicate the reverse. Either could
be correct; the difference is well within the uncertainties of the
theory and the experiment.

Thermal Dissociation and Association

Virtually all of our understanding of nonequilibrium phe-
nomena in chemical kinetics comes from analyzing two-
configuration problems, specifically theirreVersibledissociation
of a molecule or radical (which actually involves only one
configuration) and the two-well isomerization reaction.74-77

From the first of these, one finds that, during the steady-state
dissociation process, population of bound states near the
dissociation limit below their equilibrium values can reduce the
dissociation rate coefficient (in the low-pressure limit) by as
much as 2 orders of magnitude.78 The two-well isomerization
is primarily responsible for our realization that rate coefficients
are functions of all the transition probabilities in the system,
not just those of the reactant.27 Quack74 and Lin and Laidler75

showed that, for specific reactions, the forward rate coefficient
at low pressures can be controlled primarily by deactivation of
highly excited states of theproduct.Of course, both of these
phenomena can be derived as special cases of the multiple-
well formalism described above. Nevertheless, we want to
consider the thermal dissociation problem in more detail. This
interest stems from our concern withweakly bound free radicals,
which we define as free radicals that dissociate primarily to a
stable molecule and a radical(rather than two free radicals).
The bond energies for such dissociations are generally small,
and consequently, such radicals dissociate rapidly in flames,
fast enough that thermal dissociation is their primary fate under
many conditions. Examples of such radicals include vinyl, ethyl,
vinoxy, acetyl,i-C4H3, n-C4H3, i-C4H5, n-C4H5, allyl, and other
C3H5 isomers. Therefore, we want to understand as much as
possible about these simple reactions.

The remainder of this article is concerned with two issues:
(1) an approximate solution to the two-dimensional, single-well,
multiple-channel master equation for thermal dissociation and
(2) an evaluation of when and if the dissociation rate coefficients
derived from an irreversible ME (i.e., the unidirectional flux
coefficients) represent accurate rate coefficients for the two-
configuration problem.

We also discuss the issue of when and if the thermal
dissociation and reverse association rate coefficients satisfy
detailed balance. Specifically, we want to understand the
limitations of calculating the dissociation rate coefficients from
an irreversible master equation and determining the reverse
association rate coefficient from detailed balance.

Approximate Solution to the Two-Dimensional Master
Equation for Irreversible Thermal Dissociation. The two-
dimensional master equation for theirreVersible dissociation
of a molecule (or radical) immersed in an inert gas can be written
as

where the symbols are defined above. For the simplification
described below to be realized, it is important that the association
terms corresponding to the reverse of thekp(E,J) terms in eq
32 be absent. Smith and Gilbert60 were the first to realize that
if the energy transfer functionP(E,J;E′,J′) could be written in
the special form

the two-dimensional master equation, eq 32, could be reduced
to an equivalent 1-D ME. Equation 33 requires that theJ
distribution after a collision be independent of the angular
momentum of the molecule before the collision. In what we
call our E,J model, we assume thatφ(E,J) is given by

dx(E,J,t)

dt
) Z∑

J′
∫E0

∞
[P(E,J;E′,J′) x(E′,J′,t) -

P(E′,J′;E,J) x(E,J,t)]dE′ - ∑
p)1

Np

kp(E,J) x(E,J,t) (32)

P(E,J;E′,J′) ) P(E,E′) φ(E,J) (33)

φ(E,J) ) (2J + 1) F(E,J)/F(E) (34)
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where

The physical implication of this assumption is that rotational
energy is transferred in quantities similar to those for vibrational
energy and that the postcollisionJ distribution is simply
proportional to the number of states in the vicinity of anyE
andJ. The approximation is consistent with classical trajectory
calculations in that a collision usually results in comparable
quantities of rotational and vibrational energy being transferred.
Moreover, values of〈∆Ed〉 deduced from applying this model
to thermal dissociation experiments are similar to those deter-
mined from direct experiments and from trajectory calcula-
tions.78

The mathematical details of reducing eq 32 to its equivalent
1-D form are given by Miller et al.78 and Miller and Klippen-
stein.48 The derivation offers no mathematical or conceptual
difficulties and is omitted here. Although some subtle effects34,79

are missing from this model, it allows us to include all the effects
on unimolecular rate coefficients normally associated with
molecular rotation.

Another approach to the problem at hand is to takeε andJ
as the independent variables in the master equation, rather than
E andJ, whereε is the energy in the “active” degrees of freedom

andB is the appropriate rotational constant. This is the approach
taken by Smith and Gilbert.60 It is equivalent to partitioning
the total energy into two types, whereas theE,J model is not.
The master equation in this approach is identical in form to eq
32, with ε replacing E. Smith and Gilbert reduced the two-
dimensional ME to an equivalent 1-D form by making a “strong-
collisions-in-J” approximation (theε,J model), whereby

and

In eq 38,EJ ) BJ(J + 1) andF(ε,J) is the density of states of
the inactiVe (rotational) degrees of freedom with angular
momentum quantum numberJ (this formulation is actually
slightly more general than the one used by Smith and Gilbert).
This model forces complete “rotational” equilibrium to be re-
established after every collision.

In studying the dissociation of methane in the low-pressure
limit,78 we used theε,J model, theE,J model, and theE model
(the one-dimensional ME withE being the independent variable)
to analyze the best experimental results available. TheE,J model
and theE model produced very similar results, at least at high
temperatures, indicating that the rotational degrees of freedom
behave as if they are active. Unlike theE,J andE models, the
ε,J model caused us to deduce from the experiments unrealisti-
cally small values of〈∆εd〉, as small as a few cm-1 under some
conditions. Although we have not investigated this point in any
detail, it appears likely that this effect arises from the strong-
collision-in-J approximation forcing rotationally equilibrated
populations on bound states near the dissociation limit, thus
artificially increasing the rate coefficient. As a result, the values
of 〈∆εd〉 that we deduced are much too small.

In principle, one could use a variety of functions forφ(E,J)
andΦ(ε,J) in eqs 34 and 38 and get different results. However,
the distributions assumed above appear to be the only ones that
are consistent with detailed balance in that they ensure that
rotational equilibrium would be approached at long times in
the analogous reversible, two-configuration problem.

In Figure 8, we explore the effects of angular momentum
conservation (and tunneling) on the dissociation of vinyl, a good
example of a weakly bound free radical. These effects manifest
themselves most visibly at the low-pressure limit. Consequently,
we focus our attention on the low-pressure-limit rate coefficient,
k0(T) (not to be confused with the collisionless-limit rate
coefficient discussed above), for the association reaction, H+
C2H2 + He f C2H3 + He, plotted in Figure 8. The association
rate coefficient is obtained from the dissociation rate coefficient,
calculated using theE,J andE models just described, and the
equilibrium constant using the detailed balance condition. The
validity of this approach is discussed below. Figure 8 shows
that angular momentum conservation reduces the rate coefficient
by a factor of 3.5 at 250 K. This difference becomes smaller as
the temperature is increased up to 2500 K, but it never quite
disappears. The difference between theE,J and E model
predictions is 21% at 2500 K. These results are fairly typical.

An even more intriguing effect on the rate coefficient is that
of tunneling. The dissociation of a weakly bound free radical
virtually always has an intrinsic potential energy barrier (a
barrier in the exothermic direction). If one of the dissociation
products is a hydrogen atom, tunneling through the barrier is
an extremely important effect. Figure 8 shows that tunneling
increases that rate coefficient at 250 K in the present case by
almost 4 orders of magnitude; the effect decreases of course as
the temperature increases. Most interestingly, the inclusion of
tunneling causesk0 always to be a decreasing function ofT, no
matter what the size is of the intrinsic barrier. The rate
coefficient behaves as if the barrier is not there! Upon first
glance, this result is surprising, but upon reflection, it is not.
Viewed from the dissociation direction, the low-pressure limit
is reached (by definition) when dissociation above threshold
becomes infinitely fast compared to collisional excitation and
de-excitation. For the present reaction, and others like it, the
dissociation threshold is just the bond energy, not the bond
energy plus the barrier. However, dissociation just above the
threshold is extremely slow in such cases, because it occurs
strictly by tunneling. Consequently, the low-pressure limit is
approached very slowly by these reactions.

F(E) ) ∑
J

(2J + 1) F(E,J) (35)

ε ) E - BJ(J + 1) (36)

P(ε,J;ε′,J′) ) P(ε,ε′) Φ(ε,J) (37)

Φ(ε,J) ) (2J + 1) F(ε,J)e-âEJ/∑
J

(2J + 1) F(ε,J)e-âEJ (38)

Figure 8. Low-pressure-limit rate coefficients,k0(T), for H + C2H2

+ He f C2H3 + He.
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Reversible and Irreversible Dissociation: The Detailed
Balance Condition. It is rather remarkable that it has become
common practice in chemical kinetics to approximate a dis-
sociation rate coefficient as the flux coefficient obtained from
treating the dissociationirreVersibly and then to compute the
recombination (or association) rate coefficient from detailed
balance. It is common to do this even when equilibrium heavily
favors the recombination product. One would not think of
applying such a procedure universally to the two-well isomer-
ization problem for reasons noted above. Consequently, it
appears to be worthwhile to inquire about when and if such a
procedure produces accurate rate coefficients.

The question of whether, for diatomic molecules, the dis-
sociation and reverse association rate coefficients satisfy detailed
balance was discussed extensively in the 1950s and 1960s.76,80-89

The issue arose, at least partially, from the realization of the
point mentioned above, that the populations of bound states near
the dissociation limit are substantially depleted below their
equilibrium values during the steady-state dissociation process.
There was a point of view that such states must maintain
equilibrium populations for detailed balance to be satisfied.
Arguments in favor of the applicability of detailed balance
ultimately won out. However, these arguments were largely
qualitative or semiquantitative and universally imposed the
condition thatτv/τr , 1, whereτv is the vibrational relaxation
time and τr is the characteristic time for reaction to occur.
Important contributions to our understanding of this issue were
made by Keck and Carrier85 and particularly by Rice.80

In 1989, Smith et al.90 made a pivotal contribution to our
understanding of the problem at hand, not limiting their
considerations to diatomic molecule dissociations. From a
suitably formulated master equation, they attempted to derive
the detailed balance condition

for the reversible reaction, R+ m a C, whereKeq is the
equilibrium constant for the association reaction. Under the same
conditions as those described just above, they derived the rate
equation

whereku ≡ -ê1, andê1 is the largest (least negative) eigenvalue
of the transition matrixG′ of the ME describingirreVersible
dissociation.G′ is the same asG described above except that
the reverse association rates are missing. The “nonequilibrium
factor”, fne, is a function of the steady-state energy distribution,
c(E), of the dissociating molecule during its irreversible dis-
sociation. This distribution can be obtained simply by unscaling
the vector|g′1〉〈g′1|w(0)〉, where |g′1〉 is the eigenvector ofG′
corresponding toê1. If c(E) is suitably normalized so that
∫E0

∞ c(E) dE ) 1, fne can be written as

From eq 41, one can see thatfne is a measure of the degree to
which dissociation perturbs the equilibrium distribution of
the dissociating molecule, 0e fne e 1.78,90,92If only the states
that are not heavily populated at equilibrium have their

populations significantly depleted by dissociation,fne is very,
very close to unity. This is the normal situation for stable
molecules.

From eq 40, one can readily make the identification thatkd

) ku andkadd ) fneKeqku. Except for the annoyingfne factor in
kadd, these rate coefficients would satisfy detailed balance. As
it is, eq 39 is satisfied only iffne is equal to unity, which is at
odds with the work on diatomic molecules mentioned above.
If one takes the limit of eq 40 ast f ∞, one obtains the relation

Thus, the system described by eq 40 approaches equilibrium
at long times only iffne ) 1. Clearly, this cannot be correct.
Either eq 40 is not applicable at long times or it applies only if
fne ) 1. One can also conclude simply from taking this limit
that if the system obeys a phenomenological rate law at long
times, the rate coefficients must necessarily satisfy detailed
balance.

Smith et al.90,91indicate thatfne is equal to unity in most cases
and emphasize this condition. However, such is not the case
for weakly bound free radicals at high temperatures, an
important application for combustion. In Figure 9, we have
plottedfne for a number of radicals as a function of temperature
at a pressure of 1 atm. In all cases,fne deviates from unity to
some extent forT > 1000 K. The worst cases are for large
molecules with weak bonds, where the peak in the Boltzmann
distribution can lie close to the dissociation threshold, or even
above it. The nonequilibrium factor gets smaller as the pressure
is reduced, an important consequence for low-pressure flame
experiments. Of course, asp f ∞, c(E) f F(E), andfnebecomes
identically equal to unity. One should not confuse this effect
(fne < 1) with that discussed above, i.e., the reduction of the
dissociation rate coefficient in the low-pressure limit due to
underpopulated bound states near the dissociation threshold. One
can have substantial reduction of such rate coefficients and still
havefne ≈ 1, because states near the dissociation limit are not
highly populated at equilibrium in such cases.

One can begin to resolve the issue discussed above by
applying the general multiple-well methodology to the reversible
association/dissociation problem. We shall omit the details, but
both the long-time and initial-rate methods yield rate coef-
ficients that satisfy detailed balance, eq 39, exactly.92 The fact
that the long-time rate coefficients satisfy detailed balance

kadd

kd
) Keq (39)

dnC(t)

dt
) -kunC(t) + fnekuKeqnm(t) nR(t) (40)

fne ) 1/[∫E0

∞c(E)

F(E)
c(E) dE] (41)

Figure 9. The nonequilibrium factor,fne, for several weakly bound
free radicals at a pressure of 1 atm.

fneKeq )
nC(∞)

nm(∞) nR(∞)
(42)
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indicates that, no matter how much of the reaction takes place
during the vibrational-rotational relaxation period, the last stage
of the reaction always satisfies a phenomenological rate law
with rate coefficients that satisfy detailed balance. One might
also have drawn the same conclusion simply by extending
Widom’s analysis of first-order reactions27 to pseudo-first-order
processes.

Smith et al. did not pose the problem as we have. They
assumed the reaction to be approaching equilibrium from the
association direction,nC(0) ) 0, and took the association rate
terms to be an external source in the master equation.90,92 In
this approach, they must evaluatenC(t) from an integral, and in
so doing, they assumed that all ofnC(t) was produced through
the slowest-relaxing eigenmode of the system,ê1 and |g′1〉. It
turns out that this is completely equivalent to assuming thatfne

) 1; it is also equivalent to taking the limitê1/êj f 0, j g 2.
Therefore, with fne ) 1, for the same conditions as those
described above,τv/τr , 1, Smith et al. established the important
result thatkd ) ku ) -ê1 andkadd ) kdKeq. Moreover, they did
it without assumingnm . nR, that is, without imposing pseudo-
first-order conditions.

To go beyond the Smith et al. analysis, it is necessary to
assume that the reaction is pseudo-first-order. One can then
express the integral mentioned above as a sum of series in the
small parameters,ê1/êj, j g 2. The next higher-order terms
beyond those included by Smith et al. can be evaluated exactly,
and the ones beyond that can be evaluated approximately, thus
allowing the series to be summed and expressed in closed form.
The resulting phenomenological rate law, analogous to eq 40,
is92

whereN is the number of eigenvectors ofG′, andf ne
(j) for j g 2

is defined for the higher eigenvectors in exactly the same way
that fne ≡ f ne

(1) is defined for|g′1〉. Equation 43 was derived to be
applicable at long times, completely analogous to the long-time
rate coefficients discussed above. Therefore, it must apply as
the system approaches equilibrium. The only way that the correct
limit can be approached ast f ∞ is if

Using eq 44 in eq 43, one obtains the particularly simple result

Equation 45 is the extension, for pseudo-first-order reactions,
of the Smith et al. result to conditions wherefne * 1. The
parameterγ ≡ nmKeq(1 - fne) plays a key role. It is typically a
very small number. At low temperatures,fne is so close to unity
that 1 - fne is difficult to compute accurately. At high

temperatures, where 1- fne begins to deviate significantly from
zero, the factornmKeq (an effective, pseudo-first-order equilib-
rium constant) is so small thatγ becomes even smaller than it
is at low temperatures. Consequently, to a good approximation,
kd ) ku andkadd) kdKeq even whenfne * 1. Approximating the
dissociation rate coefficient as a unidirectional flux coefficient
and calculating the reverse association rate coefficient from
detailed balance is almost universally valid, as long as we
understand that these rate coefficients may apply only to the
very last (perhaps inconsequential) stage of the reaction.

The analysis described above has two intriguing features.
First, kd ) ku/[1 + nmKeq(1 - fne)] and kadd ) kuKeq/[1 +
nmKeq(1 - fne)] are composition dependent (throughnm).
However, this composition dependence is so weak that it is
unlikely to be detectable under ordinary experimental conditions.
More interestingly, whenfne begins to deviate from unity, eq
44 indicates that higher-order eigenvectors compensate so that
detailed balance is satisfied exactly. This suggests correctly that
fne * 1 indicates that some part of the reaction occurs as part
of the vibrational-rotational relaxation process.

While fne is not a measure of the degree to which detailed
balance is satisfied bykd andkadd, it is nevertheless an important
parameter. It measures the extent to which dissociation keeps
collisional processes from establishing thermal equilibrium in
the dissociating molecules. It is also the fractional contribution
to kaddof the slowest-relaxing eigenmode of the system, so that
1 - fne is the fractional contribution tokadd of the IEREs.92

In their landmark text on unimolecular reactions,91 Gilbert
and Smith, p 304, suggest that detailed balance is not a well
established physical law for association/dissociation reactions
outside the high-pressure limit. We hope that we have corrected
that misconception, which ultimately is tied to confusing flux
coefficients with rate coefficients. We prefer the statement made
by O. K. Rice in his seminal 1961 paper,80 “...if unambiguous
reaction rate constants can be found, then the quotient of the
experimentally determined constants will give the equilibrium
constant.”

Concluding Remarks

Combustion chemistry, probably more so than other fields,
relies heavily on theory for kinetic and thermochemical infor-
mation. Typically, for any elementary reaction, experimental
data exist, at most, over narrow temperature and pressure ranges.
From this information, one must infer the rate coefficient,k(T,p),
from 250 to 2500 K and from 10 Torr to 100 atm. To do so
requires a reliable theoretical apparatus. For reactions over
multiple, interconnected potential wells, we have now provided
such an apparatus. Ultimately, one would like to extend the
present formalism to two dimensions (withE andJ being the
independent variables), but until that is done, the one-
dimensional methodology discussed here appears to be quite
satisfactory. Actually, the extension to two dimensions of the
formalism for obtaining rate coefficients from the solution to
the ME should be straightforward.

The dissociation of weakly bound free radicals at high
temperatures is another important issue for combustion chem-
istry. The result that one can, under virtually all conditions,
calculate the dissociation rate coefficient from an irreversible
master equation (for single-well problems), and the reverse
association rate coefficient from detailed balance, means that
we can use our approximate 2-D solution of the master equation
almost universally. However, it is necessary to realize that these
rate coefficients apply only to the last stage of the reaction.
When fne deviates significantly from unity, reaction interferes

dnR

dt
) -

dnC

dt
)

ku

[1 + nmKeq∑
j)2

N

f ne
(j)]

nC -

kuKeq(∑
j)1

N

f ne
(j))

[1 + nmKeq∑
j)2

N

f ne
(j)]

nmnR (43)

∑
j)1

N

f ne
(j) ) 1 (44)

dnR

dt
) -

dnC

dt
)

ku

[1 + nmKeq(1 - fne)]
nC -

kuKeq

[1 + nmKeq(1 - fne)]
nmnR (45)
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significantly with the collisional processes that try to establish
thermal equilibrium, and some of the reactant is consumed as
part of the internal-energy relaxation process.

For a given bond energy,fne gets smaller as the temperature
gets higher and the size of the dissociating molecule gets larger.
The ultimate limit is the situation discussed by Tsang et al.,93

where the peak of the thermal energy distribution lies well above
the dissociation threshold. The last stage of the reaction still
obeys a phenomenological rate law with rate coefficients that
satisfy detailed balance in such cases. However, so little of the
reactant is consumed in this stage that the point is moot. The
redeeming feature of this situation is that the molecule dissoci-
ates so rapidly that the rate is largely irrelevant; only the product
distribution is important.
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